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where j(x, y, z, t) is the vorticity vector and v(x, y, z, t) is
the velocity vector.We present an Eulerian, fixed grid, approach to solve the motion

of an incompressible fluid, in two and three dimensions, in which In a vortex sheet, j is a singular measure concentrated
the vorticity is concentrated on a lower dimensional set. Our ap- on a two-dimensional surface, while in a vortex filament,
proach uses a decomposition of the vorticity of the form j 5 P(w)h,

j is a function concentrated on a tubular neighborhood ofin which both w (the level set function) and h (the vorticity strength
a curve.vector) are smooth. We derive coupled equations for w and h which

Traditionally, these problems have been solved withingive a regularization of the problem. The regularization is topologi-
cal and is automatically accomplished through the use of numerical a Lagrangian framework, in which the vorticity is carried
schemes whose viscosity shrinks to zero with grid size. There is no along by fluid particles [6–9, 2, 17]. Numerical methods
need for explicit filtering, even when singularities appear in the

based on this approach have the advantage that they adaptfront. The method also has the advantage of automatically allowing
very well to the flow. On the other hand, they are nottopological changes such as merging of surfaces. Numerical exam-

ples, including two and three dimensional vortex sheets, two-di- simple to implement in three dimensions and they may
mensional vortex dipole sheets, and point vortices, are given. To have difficulties with topological changes, such as merging
our knowledge, this is the first three-dimensional vortex sheet calcu- of interfaces. Merging may occur for some of these prob-
lation in which the sheet evolution feeds back to the calculation of

lems (and certainly not for others such as the vortex patchthe fluid velocity. Vortex in cell calculations for three-dimensional
problem). In addition, some kind of numerical filtering isvortex sheets were done earlier by Trygvasson et al. Q 1996 Aca-

demic Press, Inc. needed to stabilize the resulting ill-posed system, especially
when singularities appear in the front [6–9].

In this paper we present an Eulerian, fixed grid,
1. THE GENERAL FORMULATION approach, that works in general in two and three dimen-

sions. In the particular case of the two-dimensional vortex
We consider the motion of an incompressible fluid, in sheet problem in which the vorticity does not change

two and three dimensions, in which the vorticity is concen- sign, the approach yields a very simple and elegant formu-
trated on a lower dimensional set. Prominent examples lation.
are vortex sheets and vortex filaments in three dimensions,

The basic observation involves a variant of the level
and vortex sheets, vortex dipole sheets, and point vortices

set method for capturing fronts, developed in [12], andin two dimensions [6–9, 1–3, 17].
found to have numerous applications in physics, engi-In three dimensions, the equations are written in the
neering, differential geometry, computer vision, imageform
processing and elsewhere—see, e.g., [11, 15] and the
references therein.jt 1 v=j 2 =v j 5 0

The present work grew out of a project [5] in which the
= 3 v 5 j (1.1) first two authors regularized general ill-posed problems via

the level set approach, using the idea that a simple closed= ? v 5 0,
curve which is the level set of a function cannot change its
index; i.e., there is an automatic topological regularization.1 Research supported by NSF Grant DMS-9204271 and AFOSR Grant

F49620-94-1-0215. This is very helpful for numerical calculations. The regular-
2 Research supported by NSF Grant DMS-9103104, ARO Grant ization is automatically accomplished through the use of

DAAL03-91-G-0162 and ARPA/ONR Grant N00014-92-J-1890. dissipative schemes, which has the effect of adding a small3 Research supported by ARO Grant DAAH 04-94-G-0205, NSF Grant
curvature term (which vanishes as the grid size goes toDMS-9500814, NASA Langley Grant NAG-1-1145, and AFOSR Grant

95-1-0074. zero) to the evolution of the interface. See [5] for more

15
0021-9991/96 $18.00

Copyright  1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.



16 HARABETIAN, OSHER, AND SHU

FIG. 1. Two-dimensional vortex sheet simulation. 1282 grid points. « 5 12 Dx. 1a (top, left), t 5 0; 1b (top, right), t 5 1c (middle, left), t 5 2;
1d (middle, right), t 5 3; 1e (bottom, left), t 5 4; 1f (bottom, right), t 5 5.

details. There is therefore no need for explicit filtering. j 5 P(w)h, (1.2)
This is typical of our approach to such ill-posed problems.

Our formulation allows for topological changes, such as
merging of surfaces—see, e.g., [15], where bubble merging where P is a scalar function, typically an approximate d

function. The variable w is a scalar function whose zerois easily computed using similar ideas.
The main idea is to decompose j into a product of the level set represents the points where vorticity concentrates,

and h represents the vorticity strength vector. This decom-form
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FIG. 2. Two-dimensional vortex sheet simulation. Fixed d function width « 5 dsD , at t 5 4. 2a (top, left), 2562 points; 2b (top, right), 5122 points;
2c (bottom), 10242 points.

position is performed at time zero and is of course not where w0 , h0 , and P are chosen so that (1.2) holds at time
t 5 0. Notice that (1.2) and (1.3) imply that =w is orthogonalunique.
to h, and div(h) 5 0. This is enforced in the initial conditionOur observation is that once a decomposition is found,
and is maintained automatically by (1.2) and (1.3).the following system of equations yields a solution to the

The fact that smooth solutions of (1.2) and (1.3) satisfyEuler equations, replacing the original set of equations
the Euler equations can easily be verified by direct substitu-(1.1),
tion of (1.2) into (1.1). Conversely, if there is a unique
solution to the initial-boundary value problem, (1.1), withwt 1 v=w 5 0
appropriate boundary conditions, it will be computed

ht 1 v=h 2 =v h 5 0
(1.3)

through (1.2), (1.3).
When P is a distribution, such as a d function, ap-= 3 v 5 P(w)h

proaching P with a sequence of smooth mollifiers P« yields
= ? v 5 0. a sequence of approximating solutions. This is the ap-

proach used in numerical calculations, since the d function
can only be represented approximately on a finite grid.These equations have initial conditions,
The parameter « is usually chosen to be proportional to
the mesh size.w(0, ?) 5 w0 The advantage of this formulation, is that it replaces a

h(0, ?) 5 h0 , possibly singular and unbounded vorticity function j, by
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FIG. 3. Two-dimensional vortex sheet dipole simulation. 2562 grid points. « 5 8 Dx. 3a (top, left), t 5 0; 3b (top, right), t 5 1; 3c (middle, left),
t 5 2; 3d (middle, right), t 5 3; 3e (bottom, left), t 5 4; 3f (bottom, right), t 5 5.

bounded, smooth (at least uniformly Lipschitz) functions the regularity of the boundary of the patch for all time for
two-dimensional vortex patch paroblem.w and h. Therefore, while it is not feasible to compute

solutions of (1.1) directly, it is very easy to compute solu- The numerical method used in the next two sections,
is the third-order upwind biased ENO (essentially non-tions of (1.3).

When P« is a characteristic function, the approximate oscillatory) scheme with a third-order TVD Runge–Kutta
time stepping [13, 4], coupled with a second order ellipticsolution is a vortex patch. Bertozzi and Constantin [1] have

previously used the idea of a level set function to present solver (FISHPAK) for the Poisson equations. The choice
of ENO gives strong nonlinear stability: numerical viscositya simplified proof of Chemin’s earlier results [3] concerning
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FIG. 4. Two-dimensional vortex sheet dipole simulation. 5122 grid points. « 5 16 Dx. 4a (top, left), t 5 2; 4b (top, right), t 5 3; 4c (bottom,
left), t 5 4; 4d (bottom, right), t 5 5.

is automatically adjusted according to the local smoothness gt 1 v=g 5 0
of the solution, is maintained minimal by an adaptive sten-

curl(v) 5 g (2.1)
cil interpolation to automatically choose the locally
smoothest region to gain information, and vanishes with div(v) 5 0. (2.2)
grid size. It is our observation for these numerical tests

Our formulation (1.3) becomesthat third-order ENO gives very similar resolution to first-
order monotone schemes, with about half of the number

wt 1 v=w 5 0
of grid points in each direction, resulting in a factor of 16

ht 1 v=h 5 0 (2.3)reduction in the number of space-time grid points.

curl(v) 5 P(w)h
2. THE 2D EQUATIONS AND EXAMPLES

div(v) 5 0,
In two dimensions, the vorticity is given by

where h is now a scalar.
If the vortex sheet strength h does not change sign along

the curve, it can be normalized to h ; 1 and the equations
j 5 10

0

g(t, x, y)2 take on a particularly simple and elegant form,

wt 1 v(w)=w 5 0, (2.4)

where the velocity v(w) is given byand, hence, the Euler equations are given by
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FIG. 5. Two-dimensional vortex sheet dipole simulation. 10242 grid points. « 5 32 Dx. 5a (top, left), t 5 2; 5b (top, right), t 5 3; 5c (bottom,
left), t 5 4; 5d (bottom, right), t 5 5.

approximate (2.4) by the third-order upwind ENO finite
v 5 2S2­y

­x
D D21 P(w). (2.5) difference scheme with a third-order TVD Runge–Kutta

time stepping [13, 4]. At every time step, the velocity v is
first obtained by solving the Poisson equation for the

In this case, the vortex sheet strength along the curve is stream function C,
given by 1/u=wu (see (3.1)).

DC 5 2P(w)EXAMPLE 2.1. (Vortex sheets in 2D). We consider the
periodic vortex sheet in two dimensions, i.e., P(w) 5 d(w)

with boundary conditionsin (2.5). The three-dimensional case is defined in detail in
Example 3.1 of next section. The evolution of the vortex

C(x, 61) 5 0sheet in the Lagrangian framework has been considered
by various authors. Krasny [6, 7] has computed vortex
sheet rollup using vortex blobs and point vortices with and periodic in x. This is done by using a second-order

elliptic solver FISHPAK. Once C is obtained, the velocityfiltering. Baker and Shelley [2] have approximated the
vortex sheet by a layer of constant vorticity which they is recovered by v 5 (2Cy , Cx) by using either ENO or

central difference approximations (we do not observe ma-computed by Lagrangian methods. In the context of our
approach, their approximation corresponds to approximat- jor differences among the two; the results shown are those

obtained by central difference). Once v is obtained, upwinding the d function by a step function.
In our framework, we use a fixed Eulerian grid and biaesd ENO is easily applied to (2.4) [4].
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FIG. 6. Two-dimensional point vortices simulation. 2562 grid points. « 5 12 Dx. 10 contour lines between w 5 0 and w 5 0.04. Solid lines for
w1 and dashed lines for w2 . 6a (top, left), t 5 0; 6b (top, right), t 5 5; 6c (bottom, left), t 5 10; 6d (bottom, right), t 5 15.

The initial conditions are similar to the ones in [7], i.e., very costly to implement numerically. Our numerical re-
sults show that one can take « to be proportional to Dx,given by a sinusoidal perturbation of a flat sheet,
but convergence is difficult to establish theoretically.

In Figs. 1a to 1f, we present the result of using 1282 gridw0(x, y) 5 y 1 0.05 sin(fx)
points. The parameter « in the approximate d function is
chosen as « 5 12 Dx. We use the graphic packageThe boundary condition for w are periodic, of the form
TECPLOT to draw the level curve of w 5 0. Notice that
this is restricted by the resolution of the contour procedure.w(t, 21, y) 5 w(t, 1, y)
The code can run in a stable way for a much longer time,

w(t, x, 21) 5 w(t, x, 1) 2 2. however, the resolution at the core of rollup will be gradu-
ally lost due to numerical errors. Next, we keep « 5 12

The d function is approximated as in [14, 15] by
Dx but double the grid points in each direction to 2562,
the result of t 5 4 is shown in Fig. 2a. Comparing with
Fig. 1e, we can see that there are more turns in the core
at the same physical time when the grid size is reducedd«(f) 5 5 1

2«
S1 1 cos Sff

«
DD if uwu , «

0 otherwise.

(2.6)
and the d function width « is kept proportional to Dx. One
might wonder whether the core structure of Fig. 2a is
distorted by numerical error. To verify that this is not the

For fixed «, there is convergence as Dx R 0 to a smooth case, we keep « 5 12 3 sgSh 5 dsD fixed and reduce Dx (Figs.
2b and 2c. The three pictures overlay very well, Figs. 2b andsolution. One can then take « R 0. This two step limit is
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FIG. 7. Three-dimensional vortex sheet simulation. 643 grid points. « 5 6 Dx. 7a (top, left), t 5 0; 7b (top, right), t 5 1; 7c (middle, left),
t 5 2; 7d (middle, right), t 5 3; 7e (bottom, left), t 5 4; 7f (bottom, right), t 5 5.

2c are indistinguishable, indicating that the core structure is EXAMPLE 2.2. (Vortex sheet dipole). In this example, P
is the derivative of the approximate d function in (2.6), i.e.,a resolved solution to the problem and convergence is

obtained with fixed «. By reducing « for the more refined
grids, more turns in the core can be obtained in shorter
time (pictures not shown).

P(w) 5 52
f

2«2 sin Sfw

«
D if uwu , «

0 otherwise.

(2.7)The smoothing of the d function and the third-order
truncation error in the advection step and the second-order
error in the inverse Laplacian are the only smoothing steps
in our method. The vorticity g is chosen to be equal to aP(w(x, y)),
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FIG. 8. The z 5 0 plane cut for the three-dimensional vortex sheet simulation. 643 grid points. « 5 6 Dx. 8a (top, left), t 5 0; 8b (top, right),
t 5 1; 8c (middle, left), t 5 2; 8d (middle, right), t 5 3; 8e (bottom, left), t 5 4; 8f (bottom, right), t 5 5.

where a is the amplitude of the dipole. From (2.7), we see
w0(x, y) 5

y
1 2 0.75 sin(fx)

.that the vorticity is concentrated on two vortex sheets G1 ,
G2 which are of opposite sign and of distance « apart,
where G6 are the level sets w 5 6e/2. This example models
the evolution of a very thin jet [8]. This represents a flat dipole sheet with a symmetric sinusoi-

dal perturbation in strength.Equation (2.4) is again computed with the third-order
ENO scheme coupled with a second-order potential solver, The results of a grid with 2562 points, at t 5 0, 1, 2, 3,

4, and 5, are shown in Figs. 3a to 3f. We choose « 5 8 Dxwith the initial condition
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FIG. 9. The x 5 0 plane cut for the three-dimensional vortex sheet simulation. 643 grid points. « 5 6 Dx. 9a (top, left), t 5 0; 9b (top, right),
t 5 1; 9c (middle, left), t 5 2; 9d (middle, right), t 5 3; 9e (bottom, left), t 5 4; 9f (bottom, right), t 5 5.

and the dipole amplitude a 5 0.04. In this computation, We choose this formula because it allows one to control the
dipole separation. In this case, we set the dipole separationwe set P equal to a different formula than (2.7):
equal to 2«, i.e., Figs. 3a to 3f show the level sets of w 5
6«. The boundary conditions for the stream function C
and for w are the same as in Example 2.1.

As the results show, the dipole sheet rolls up symmetri-
P(w) 55

2
1

2«2 S1 1 cos Sf(f 1 «)
«

DD if 2 2« # w # 0

1
1

2«2 S1 1 cos Sf(f 2 «)
«

DD if 0 # w # 2«

0 otherwise.

cally, and the tips become more stretched with time until
they ‘‘peel off’’ in Fig. 3f. This peel-off is not physical and
should be the result of lack of numerical resolution in the
part of very thin and stretched tips of the bubble. To
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illustrate how much numerical errors are present in the We let P(w) 5 d(w) (in practice d is replaced by an
approximation). The zero level set of w is the vortex sheetfigures, we also show in Figs. 4a to 4d the results of 5122

grid points, and in Figs. 5a to 5d that of 10242 grid points, G(s), parameterized by surface area s. The variable h0 is
chosen to fit the initial vortex sheet strength. For instance,with the same « 5 8 3 sgSh , at t 5 2, 3, 4, and 5. Comparing

with Figs. 3c and 3f, we can see that the 2562 results are given any smooth test function g,
basically resolved up to t 5 3 but are slightly underresolved
afterwards. However, the structures of the solution be- kj, gl 5 kh0d(w0), gl
tween these different resolutions are still similar. Also no-
tice that, in the most refined run in Fig. 5, the ‘‘peel-off’’ 5 E h0(G0(s))g(G0(s))

1
u=w0u

ds.
does not appear; the tip of the bubble is connected (this
can be seen in a zoomed version of Fig. 5d). These results

Thus, the initial vortex sheet strength is given byare similar to the computations performed by Krasny [8].

EXAMPLE 3 (Point vortices). In this example, P is a d h0

u=w0u
(3.1)function and w is supported at finite number of points in

the plane, x1 , x2 , ..., xn . For example, if the vorticity is
positive, initially one may choose

To obtain the velocity vector, one introduces the vector
potential A, where

w1(x) 5 min
i
Sux 2 xiu

ai
D,

v 5 = 3 A, div(A) 5 0,

where ai . 0 are the vortex point strengths. and solves the Poisson equation
For point vortices with negative strength, one introduces

a second level set function, w2 . Both w1 and w2 evolve by DA 5 2P(w)h. (3.2)
(2.4), where the velocity v is given by

To ensure that div(A) 5 0, we require that div(h) 5 0 and
that =w · h 5 0 initially. It is easy to see that these equalitiesv 5 2S2­y

­x
D D21 (d(w1) 1 d(w2)).

are maintained as t increases.
The boundary conditions for the velocity are v2(x, 61,

z) 5 0 and periodic in x and z. To obtain the boundaryThis procedure can be applied to a general n-body
conditions for A 5 (A1 , A2 , A3), we use the divergence-problem.
free condition on A in addition to the velocity boundaryWe will show the numerical result of three point vortices,
condition. Thus,two with positive strength a1 5 1 and a2 5 2, located at

x1 5 (20.5, 20.5) and x2 5 (20.5, 0.5), respectively, and
A1(x, 61, z) 5 A3(x, 61, z) 5 0

(3.3)
one with negative strength a3 5 23, located at x3 5
(0.5, 0). The boundary condition for the stream function

­yA2(x, 61, z) 5 0
is C 5 0 at all four boundaries x 5 61 and y 5 11, and
the boundary condition for w is Neumann. We again use

and periodic in x, z. The Neumann condition requires the2562 grid points and « 5 12 Dx. The results at t 5 0, 5, 10,
compatibility conditionand 15 are shown in Figs. 6a to 6d, where 10 contours from

w 5 0 to w 5 0.04 are drawn, with the solid lines correspond- E j2(x, y, z, 0) dx dy dz 5 0.ing to the positive vortices w1 and the dashed lines corre-
sponding to the negative vortices w2 .

The vortex patch problem is easier to compute as the Three-dimensional runs are much more expensive than
function P(w) is less singular, and the results are omitted. two-dimensional runs, not only because the number of

grid points increases, but also because there are now four
3. THE 3D EQUATIONS AND EXAMPLES evolution equations (for w and h) and three potential equa-

tions. We still use the third-order ENO scheme coupledWe now give two examples in three dimensions. Numeri-
with the second-order elliptic solver FISHPAK, with 643

cal results for the first example are also shown.
grid points, and « is chosen as 6 Dx, which is the same in
magnitude as that used in Fig. 1 of Example 2.1. TheEXAMPLE 3.1. (Vortex sheets in 3D). In this example

we sketch the algorithm for initializing and computing a boundary conditions for w are similar to the ones in two
dimensions, periodic in all directions (modulo the linearperiodic 3D vortex sheet, using (1.3).
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term in y). The vortex sheet strength vector h is periodic flows have been computed in Lagrangian coordinates. This
formulation is very simple and very easy to implement inin all directions.

We first verify whether we can recover the two-dimen- practice, and it has the advantage of handling topological
singularities automatically. In addition, no explicit filteringsional results with the three-dimensional setting. We use

the initial condition is necessary, in order to handle the ill-posedness of the
underlying interface problem. Our calculation of a three-
dimensional vortex sheet seems to be the first successfulw0(x, y, z) 5 y 1 0.05 sin(fx),
Eulerian calculation in which the surface feeds back into
the calculation of the velocity of the flow. Vortex in cellwhich is the same as that for Example 2.1, and choose a
calculations for three-dimensional vortex sheets were doneconstant initial condition for h as h0(x, y, z) 5 (0, 0, 1).
earlier by Trygvasson et al. [16].We observe exact agreement with our two-dimensional

In future work, we shall explore more efficient algo-results in Example 2.1, Fig. 1.
rithms using adaptive mesh refinement techniques.Next, we consider the truly three-dimensional problem

with the initial condition chosen as
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